Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Language
Document Type
Year range
1.
Physical Review Applied ; 18(2), 2022.
Article in English | Scopus | ID: covidwho-2018422

ABSTRACT

Clusters of contaminations have been identified within rehearsing choirs during the COVID-19 pandemic. In particular, singing and playing wind instruments are known to generate enhanced release of respiratory droplets, which are then transported by the expiratory flows. By tracking the air exhaled by professional opera singers and musicians from the MET Orchestra in New York City, we measure the spatial extent of the various air flows in opera. While loud singing is often associated with fast flows, professional opera singers and musicians are usually exhaling air flows slower than the air jets exhaled by a person breathing at rest. However, we identify a few situations leading to the release of rapid air jets that are able to enhance the transport of pathogenic droplets within an orchestra. Finally, we show how singing with a facemask and covering the bell of a wind instrument provide a strong reduction of the transport of respiratory droplets, in addition to the filtration features of a mask. © 2022 American Physical Society.

2.
Physical Review Fluids ; 5(12), 2020.
Article in English | Scopus | ID: covidwho-991025

ABSTRACT

It is now recognized that aerosol transport contributes to the transmission of the SARS-CoV-2 virus. Here, we improve existing social distancing guidelines for airborne pathogens, which are typically given in terms of distance with vague statements about contact times. Also, estimates of inhalation of virus in a contaminated space usually assume a well-mixed environment, which is realistic for some, but not all, situations. In particular, we consider a local casual interaction of an infected individual and a susceptible individual, both maskless, account for the air flow and aerosol transport characteristics of speaking and breathing in a poorly ventilated space, and propose social distancing guidelines that involve both space and contact time, based on a conservative model of fluid dynamics of the interactions. © 2020 American Physical Society.

3.
Physical Review Fluids ; 5(10), 2020.
Article | Web of Science | ID: covidwho-867947

ABSTRACT

Speech is a potent route for viral transmission in the COVID-19 pandemic. Informed mitigation strategies are difficult to develop since no aerosolization mechanism has been visualized yet in the oral cavity. Here we show with high-speed imaging how phonation of common stop consonants, found in most of the world's spoken languages, form and extend salivary filaments in a few milliseconds as moist lips open or when the tongue separates from the teeth. Both saliva viscoelasticity and airflow associated with the plosion of stop consonants are essential for stabilizing and subsequently forming centimeter-scale thin filaments, tens of microns in diameter, that break into speech droplets. Moreover, these plosive consonants induce vortex rings that drive meter-long transport of exhaled air, tying this mechanism to transport associated with speech. We demonstrate that a similar mechanism of aerosolization occurs during the vibration of reeds in wind instruments and may occur during the flapping of the glottis folds. Finally, our research suggests a mitigation of droplet production during speech by using a lip balm.

SELECTION OF CITATIONS
SEARCH DETAIL